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INTRODUCION AND THEORY 
It is well known that the confinement of 

a high explosive (HE) cylinder by inert 
materials can change the detonation speed 
in the HE. The hydrodynamic basis of this 
effect can be understood by examining the 
pressure/streamline-deflection matching 
condition at the HE/inert interface. 
Although a full hydrodynamic simulation 
of the complete flow is needed for a 
detailed description of this interaction, a 
relatively simple shock polar analysis 
provides a good leading-order prediction 
of the confinement effect. The shock polar 
analysis considers matching the flow states 
(pressure and streamline deflection) that 
are found immediately behind the lead 
shocks (see Fig. 1). This is usually done in 
a frame of reference that moves with the 
detonation shock-inert interface 
intersection.  To carry out the analysis, the 
equation of state of the unreacted HE and 

inert are required as well as an assumed 
value for the detonation phase speed.   

The equations used for this analysis 
stem from the shock conditions of the 
Euler equations.  The shock polar relates 
the post-shock pressure and the 
commensurate streamline deflection angle 
induced by an oblique shock wave.  For an 
ideal gas (in the strong shock limit), given 
an initial density, ρo, and a phase speed, 
Do, and ratio of specific heats, γ, one can 
determine the post shock pressure, p, and 
streamline deflection angle, φ, as a 
function of the shock deflection angle, ω: 

p =
2ρoDo2 cos2 ω

γ +1  

φ = arctan
sinω cosω

γ +1− 2cos2 ω
 
 
  

  
The shock polar is given simply as a curve 
in p-φ space parameterized by the shock 
deflection angle, ω, which ranges from 0° 
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deflection to 90° deflection.  At ω =0°, we 
recover the normal post shock pressure, 
and no streamline deflection.  As ω is 
increased, the post shock pressure 
decreases, and the streamline deflection 
increases.  There exists a maximum 
streamline deflection angle for a given 
shock deflection angle, at which point 
further increases in the shock deflection 
angle result in decreasing streamline 
deflection.  For an ideal gas, this point 
corresponds to the point where the post 
shock state is exactly sonic in the steady 
reference frame.  At ω =90°, the pressure 
and streamline deflection are zero, 
corresponding to an acoustic wave of zero 
strength.  See Fig. 1 for two examples. 

In general, there are several types of 
interactions that give a “match” of the 
pressure and streamline-deflection across 
the HE/inert interface.  A match would 
simply be a point in p-φ space where the 
HE polar and inert polar cross. The two 
classical types of interactions are for strong 
and weak confinement. 

For the typical strong confinement case, 
a lead shock in the HE is transmitted into 
the inert, with no reflected wave traveling 
back into the HE.  See Fig. 1.  There is a 
subsonic region behind the detonation 
shock, and a supersonic region behind the 
inert shock.  The shock polar diagram for 
this case is shown in Fig. 2. 

 

 
FIGURE 1.  TYPICAL STRONG 
CONFINEMENT CONFIGURATION. 
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FIGURE 2. TYPICAL STRONG 
CONFINEMENT SHOCK POLAR. 
SOLID LINE IS HE POLAR 
(γ=3,ρo=2gm/cc,Do=0.8cm/us), DASHED 
LINE IS INERT POLAR 
(γ=7,ρo=9gm/cc,Do=0.8cm/us). 
 

For the typical weak confinement case, 
the match between the higher pressure lead 
shock in the HE and the lower pressure 
transmitted shock in the inert requires an 
intervening Prandtl-Meyer expansion fan 
in the HE. See Figure 3.  The associated 
shock polar, in Figure 4, shows that there 



is no intersection of only shocks, and the 
only match occurs with a fan in the HE. 

 
FIGURE 3.  TYPICAL WEAK 
CONFINEMENT CONFIGURATION. 
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FIGURE 4. TYPICAL WEAK 
CONFINEMENT SHOCK POLAR. 
SOLID LINE IS HE POLAR 
(γ=3,ρo=2gm/cc,Do=0.8cm/us), DASHED 
LINE IS INERT POLAR 
(γ=1.4,ρo=2gm/cc,Do=0.8cm/us). 
 

Numerical simulations, that resolve the 
pressure and streamline deflection 
throughout the entire reaction zone, 
confirm the behavior outlined above. 
However, there are several other cases, 
which don’t have such simple descriptions.  
For example, there exist cases in which 
there are multiple match points in the 
shock polar plane.  See Figs. 5 and 6. 
There is another case, which has only a 
match at a supersonic point on the HE 
polar, see Fig. 7. There are other cases in 

which there is no apparent match (at least 
without an intervening Prandlt-Meyer fan 
in the inert.)  See Fig. 8. 
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FIGURE 5.  SHOCK POLAR WITH 2 
POSSIBLE (ONE STRONG, ONE 
WEAK) MATCH POINTS. SOLID 
LINE IS HE POLAR 
(γ=3,ρo=2gm/cc,Do=0.8cm/us), DASHED 
LINE IS INERT POLAR 
(γ=2,ρo=1.465gm/cc,Do=0.8cm/us). 
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FIGURE 6.  SHOCK POLAR WITH 3 
POSSIBLE (ALL WEAK) MATCH 
POINTS. SOLID LINE IS HE POLAR 
(γ=3,ρo=2gm/cc,Do=0.8cm/us), DASHED 
LINE IS INERT POLAR 
(γ=1.4,ρo=0.5gm/cc,Do=0.8cm/us). 
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FIGURE 7.  SHOCK POLAR WITH 
SUPERSONIC HE SHOCK MATCH 
POINT. SOLID LINE IS HE POLAR 
(γ=3,ρo=2gm/cc,Do=0.8cm/us), DASHED 
LINE IS INERT POLAR 
(γ=4,ρo=1gm/cc,Do=0.8cm/us). 
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FIGURE 8.  SHOCK POLAR WITH 
NO APPARENT MATCH POINT. 
SOLID LINE IS HE POLAR 
(γ=3,ρo=2gm/cc,Do=0.8cm/us), DASHED 
LINE IS INERT POLAR 
(γ=7,ρo=3gm/cc,Do=0.8cm/us). 

The above shock polar diagrams 
represent some of the different types of 
interactions that can take place for steady 
propagating detonation waves. The focus 
of this work is to categorize all the types of 
interactions that are possible. In this paper, 
we present the results obtained using a 

high-resolution, multi-material, adaptive 
mesh refinement algorithm to compute the 
initial boundary value problems for the 
reactive Euler equations. This helps 
elucidate the large number of interactions 
that are possible. In cases where there 
exists more than one possible solution (for 
example Fig. 5), the type of interaction 
achieved depends on the thickness of the 
inert confining material. Also, the 
properties of any materials, adjacent to 
these thin inert confinement layers, are 
important. 

Detailed analysis of the numerical 
simulations are presented, along with 
comparisons to the hydrodynamic theory.  
Where multiple solution types are possible, 
arguments based on hydrodynamic 
domain-of-dependence are presented that 
help to explain which solution type is 
realized. 
 
COMPUTATIONAL RESULTS 

Here, computational results will be 
presented that solve the two-dimensional 
Euler equations with reaction: 

ρt + ρu( )x + ρv( )y = 0  
ρu( )t + ρu2 + p( )x + ρuv( )y = 0 
ρv( )t + ρuv( )x + ρv2 + p( )y = 0

 
Et + uE + up( )x + vE + vp( )y = 0  

ρλ( )t + ρuλ( )x + ρvλ( )y = ρr  
With an equation of state: 

E =
p

γ −1
−Qρλ +

ρ
2
u2 + v 2( )

 
Here, a single reaction progress variable, 
λ, goes from zero  (unreacted) to one 
(completely reacted) by the rate, r: 

r = H pign( )k 1− λ( )1/ 2

 
and 

H pign( )=
1, if p > pign  
0, otherwise

 
 
  



where pign=10kbar. We choose the 
following parameters for the HE: ρ0=2 
gm/cc, Q=4 mm2/µs2, k=2.5µs-1, γ=3.  This 
model gives a complete reaction zone (for 
the ZND-CJ detonation) of 4mm, with 
DCJ=0.8cm/µs, and a ZND spike pressure 
of 0.64Mbar.  All computations were 
performed using an Adaptive Mesh 
Refinement (AMR) strategy1 to help deal 
with the multi-scale nature of detonation 
propagation4.  We utilize the Ghost Fluid 
Method (GFM)2 to treat the multi-material 
interfaces. 

The computational problem will be to 
simulate a slab of explosive, 32mm in 
thickness and roughly 640mm in length, 
confined by a single inert.  See Fig. 9. The 
left and right boundary conditions are 
rigid, while the upper and lower boundary 
conditions are zero gradient. The inert 
thickness will be taken to be 4mm, unless 
otherwise noted. Initially, a hot-region of 
HE will be used to trigger detonation.  The 
numerical experiment is then run for 
several (usually near 20) charge widths, to 
ensure the solution has achieved a steady 
traveling state. In the next sections, 
computational results will be shown for the 
cases corresponding to Figures 2, 4 and 5. 

 
 
INERT 
 
 
HE 
 
 
HE HOT 
SPOT 
 
 
 

 

FIGURE 9. SCHEMATIC OF INITIAL 
CONDITIONS FOR NUMERICAL 
SIMULATIONS.  NOTE THE TRUE 
ASPECT RATIO IS MUCH LARGER. 
 
 
STRONG CONFINEMENT 
 Here, we choose the inert confining 
material to have the properties: ρ0=9 gm/cc 
and γ=7.  See Fig. 2 for the HE and inert 
shock polars.  This gives a match in the 
shock polar plane with a pressure of 
627kbar, and a streamline deflection of 
7.9° and a detonation shock deflection 
angle of 8.2° (the shock deflection in the 
inert is 48.7°).  In Figure 10, we see a 
pressure plot of the resulting numerical 
simulation.  Clearly the shock polar 
analysis gives a good prediction for the 
HE-inert interaction. 
 
 
 
 
 
 
 

 
 
FIGURE 10. PRESSURE PLOT OF 
STRONG INERT CONFINEMENT.  
SOLID LINES REPRESENT 
MATERIAL INTERFACE AND 
SONIC LOCUS. 
 
WEAK CONFINEMENT 
 Here, we choose the inert confining 
material to have the properties: ρ0=2 gm/cc 
and γ=1.4.  This gives a match in the shock 
polar plane with a pressure of 250kbar, and 
a streamline deflection of 23.6° and a 
detonation shock deflection angle of 35.3° 
(the shock deflection in the inert is 61°).  
In Figure 11, we see a density plot of the 



resulting numerical simulation.  Note the 
Prandlt-Meyer fan in the HE. Again, the 
shock polar analysis gives a good 
prediction for the HE-inert interaction. 
 
 
 
 
 
 
 
 
 
 
FIGURE 11. DENSITY PLOT OF 
WEAK INERT CONFINEMENT.  
 
DUAL SHOCK POLAR MATCHES 
 Here, we choose the inert confining 
material to have the properties: ρ0=1.465 
gm/cc and γ=2.  This gives the dual match 
in the shock polar plane, corresponding to 
Figure 5.  The strong match yields a 
pressure of 620kbar, and a streamline 
deflection of 9.5° and a detonation shock 
deflection angle of 10.1° (the shock 
deflection in the inert is 4.9°). The weak 
match point yields a pressure of 245kbar, 
and a streamline deflection of 23.8° and a 
detonation shock deflection angle of 35.3° 
(the shock deflection in the inert is 51.2°).  
In performing a series of numerical 
studies, varying the thickness of the inert 
material, we find that if the material is 
relatively thick, when compared to the 
reaction zone length, the weak 
confinement match is seen.  See Figure 12. 
Note that this is a steady traveling 
configuration, and the Mach stem that 
forms in the inert (next to the rigid 
confinement) does not propagate forward, 
So, it has no chance to catch up and 
influence the reaction zone.  In other 
words, the subsonic portion of the reaction 

zone  is completely surrounded by 
supersonic flow.  

 When the thickness of the inert is 
relatively thin, we see the strong 
confinement solution. See Figure 13.  
Here, there is a subsonic region behind 
both the detonation shock and the inert 
shock, and thus the reaction zone “feels” 
the affects of the outside rigid 
confinement. 

 
FIGURE 12. PRESSURE PLOT OF 
WEAK INERT CONFINEMENT (4mm 
thick inert). 
 

 
FIGURE 13. PRESSURE PLOT OF 
STRONG INERT CONFINEMENT 
(1mm thick inert).  
 
Notice that the streamline deflection and 
pressure near the material interface are 
quite different between Figures 12 and 13.  
This difference affects the phase speed as 
well.  Recall that the HE charge thickness 
(3.2 cm) is the same in these figures.  
Varying the thickness of this inert gives 
varying phase speeds.  See Figure 14.   



Also shown in Figure 14 is the variation of 
phase speed as a function of numerical 
resolution.  Somewhere between 2mm and 
3mm confiner thicknesses, one observes 
the transition from strong confinement to 
weak confinement.  Once the weak 
confinement is reached, further increases 
in the thickness produce no further 
decreases in phase velocity (this is due to 
the fact that the reaction zone is 
completely surrounded by a supersonic 
region). As pointed out in Stewart and 
Bdzil3, if the inert confiner is roughly 
greater than 1/2 a reaction zone length (in 
our case the reaction zone length is 4mm), 
it might as well be “infinitely thick”, since 
no further information from beyond this 
distance has a chance at catching the 
detonation reaction zone.  This is precisely 
where the transition is observed in this 
case.  

On the other hand, the phase speed is 
sensitive to the thickness when the strong 
confinement case is achieved.  Clearly, 
when the thickness is zero, and the second 
inert is truly rigid, one gets DCJ as the 
phase speed for the steady traveling 
solution.  When the thickness of the inert is 
finite, but thin enough to be a “subsonic” 
interaction, then this thickness plays a role. 
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FIGURE 14. PHASE SPEED (mm/υs) 
VERSUS THICKNESS OF INERT 
CONFINER. 
 
 
DISCUSSION 
 Here, it has been demonstrated that the 
inert confining material can have a 
profound affect on the local (and even 
global) behavior of high explosive-inert 
systems.  It has also been demonstrated 
that the shock polar analysis can be used to 
accurately describe the HE-inert 
interaction at charge edges. As noted in 
Stewart and Bdzil3, there can be many 
types of HE-inert interactions.  In utilizing 
a theory, such as Detonation Shock 
Dynamics3-6, it is critical to understand 
appropriate boundary conditions for 
propagating detonation shocks. 
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