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INTRODUCTION 
 The first Detonation Shock 
Dynamics (DSD) theory to be developed 
showed that the velocity of detonation 
normal to the shock, Dn , was solely a 
function of the shock curvature, κ. Referred 
to as the )(κnD  subscale detonation front 
law, this leading-order model pictured the 
flow as being a 1D, nozzle-like (spherically 
expanding), quasi-stationary flow. Non-
uniformities in the flow experienced as one 
moved from place-to-place along the shock 
were neglected (no transverse flow 
variations) as were transient effects having 
to do with the inertia provided by the 
reaction-zone structure to instantaneous 

acceleration of the detonation shock (no 
explicit time variations). 
 An analysis of the reaction zone 
flow, immediately adjacent to the inert 
material which provides confinement for 
the detonating explosive, showed that the 
angle between the normal to the shock and 
normal to the undisturbed inert/explosive 
interface has a unique value, being only a 
function of the HE/inert pair. This boundary 
angle serves as a boundary condition for the 
detonation, which, when combined with the 

)(κnD  law, provides a complete 
mathematical description for propagating  
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The DSD method for modeling propagating detonation is based on
three elements: 1) a subscale theory of multi-dimensional detonation
that treats the detonation as a front whose dynamics depends only on
metrics of the front (such as curvature, etc.), 2) high-resolution, direct
numerical simulation of detonation using Euler equation models, and 3)
physical experiments to characterize multi-dimensional detonation
propagation in real explosives and to provide data to calibrate DSD
front models. In this paper, we describe our work on elements 1) and
3), develop a DSD calibration for the nonideal explosive ANFO and
then demonstrate the utility of the ANFO calibration, with an example
3D detonation propagation calculation.



 
FIGURE 1. Dn(κ )  ALONG SHOCKS 
AT 3 RADII PLUS A COMPOSITE 
FIT, ALL FOR PBX 9502 AT 250C. 
DCJ ≈ 7.8mm / µs  
 
detonation in an explosive. An example of 
such a propagation law is the 
experimentally measured )(κnD  law for 
PBX 9502 described by us at the 11th 
Detonation Symposium1,2 and shown in 
Figure 1. The nD vs κ  overlay fairly well 
for different charge sizes. 
 Recent data on the nonideal 
explosive ANFO (density 0.88 gm/cc) 
shows the nD vs κ along the shocks to be 
different from that shown in Figure 1. 
This data, shown in Figure 2, reveals little 
or no overlap of nD vs κ  for the various 
charge sizes. We discuss the data on 
ANFO in the section of this paper labeled 
EXPERIMENTAL. It is these structural 
differences from PBX 9502 and other 
ideal explosives that set ANFO apart as a 
nonideal. This data shows substantially 
larger departures of nD from DCJ , with the 
maximum measured detonation speed 
being far below DCJ . 
 This difference in character for 

nD vs κ along the shocks combined with 
our general interest in developing 1) a 
higher-order DSD theory and 2) a theory 
for explosives with highly state-sensitive, 
Arrhenius reaction rates, led us to develop  
extended theories. What distinguishes  
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FIGURE 2. Dn(κ )  ALONG SHOCKS  
AT 6 RADII, ALL FOR AMBIENT 
TEMPERATURE ANFO LOT-
20FEB2001. DCJ ≈ 5.2mm / µs  
 
these extended theories from our earlier 
work is the inclusion of 1) higher-order 
terms in the perturbation expansion and 2) 
highly state-sensitive reaction rates. These 
in turn lead to more complex detonation 
front propagation laws. In addition to a 
dependence of nD on κ , these laws 
contain contributions form shock 
acceleration, DDn / Dt( ) , and transverse 
flow, ∂ 2Dn /∂ξ 2( ), where ξ  is the arc 
length along the shock1,3. We briefly 
describe these theories in the section of 
the paper labeled THEORY. 
 Using these theoretically derived 
propagation law forms as a guide, we 
develop a DSD calibration for ANFO 
based on the propagation law form 

 

(1) κs + sin(φ)
r

= F(D) −A(D ) DD
Dt

+ B(D )
∂ 2D
∂ξ 2

  ,        

where  D = Dn / DCJ −1, r = the radial 
coordinate and  F, A and   B  are functions 
whose forms we select and then, in the 
section of the paper labeled 
CALIBRATION, fit to the rate stick data 
on ANFO. To demonstrate that such, 
more complex calibrated propagation laws 
are robust and useful for engineering 



calculations, in the section labeled 3D 
LEVEL-SET CODE, we use this 
propagation law to compute an explosive 
problem. 
 
THEORY 
 Most rational theories of the multi-
dimensional detonation reaction zone are 
based on the notion that the detonation 
departs from a planar, steady one-
dimensional detonation by a small 
amount, hence, the notion of a 
perturbation theory for multi-dimensional 
detonation. We along with others have 
developed such theories1,3-6, all based on 
the limit that the 1D, steady, Zeldovich-
von Neumann-Doring (ZND) reaction-
zone length, ηrz , is short compared to the 
radius of curvature of the detonation 
shock, 1/κ . This serves to define a 
perturbation parameter, ηrzκ = O(ε) << 1. 
The idea then is that the detonation 
reaction zone is thin compared to all other 
problem scales and so, when viewed from 
the perspective of these other scales 
(charge size, etc.), it can be viewed as a 
front separating unburnt from burnt 
explosive. The dynamics of this subscale 
or front model is determined by solving 
for the interaction between the reaction 
zone and the system scale flow. This 
large-scale flow is controlled by the 
explosive geometry and by the conditions 
imposed on the high-explosive (HE) at its’ 
boundaries. Although thin compared to 
the HE dimensions, the reaction zone is 
not vanishingly thin, but maintains a 
relative size, ε, which defines the 
distinguished limit we consider here. This 
theory develops a equation for how the 
normal velocity of propagation of the 
detonation front,   D , depends on measures 
of the three-dimensionality of the flow, 
such as     κ and ∂ 2D ∂ξ 2 , and on time 
dependence, as measured by the time rate 
of change in the shock normal direction, 

  DD / Dt . This is an intrinsic propagation 
law. Once solved for, it can be used to 
describe the progress of the front for all 
explosive geometry and boundary 
condition types. Besides the weak 
curvature assumption, this theory relies on 
the following properties of unsupported 
detonation for its’ derivation. 1) The front 
moves into the unreacted HE at 
supersonic speeds, 2) in the reference 
frame of the detonation shock, the post 
reaction zone flow is supersonic, and thus 
the reaction zone is isolated from the post 
reaction zone flow, and 3) the detonation 
communicates with the environment only 
through where the edge of its’ reaction 
zone meets the inert/HE boundary. 
 Based on an analysis of the 
reactive Euler equations 

 

(2) ∂ρ
∂t

+ ∇ ⋅ (ρu) = 0,

(3)
∂ρu
∂t

+ ∇ ⋅ ρuu + IP( )= 0,

(4) ∂ρe
∂t

+ ∇ ⋅ ρe + P( )u[ ]= 0,

(5) ∂λi

∂t
+ u ⋅ ∇λi = Ri P,ρ,T,λ1,λ2,L,λN( ) ,

 

where  E(P,ρ,λ1,λ2,L,λN )  is the specific 
internal energy, e = E + u ⋅ u /2, λi ' s  are 
the reaction progress variables, u   is the 
laboratory frame particle velocity, P  is 
the pressure, ρ  is the density and Ri  are 
the reaction rates, we obtain the 
distinguished limit we seek by scaling the 
independent variables so as  
(6) ˜ t = εt, d ˜ ξ = εdξ = ε dx( )2 + dy( )2( )

+

1 2

where the + sign denotes variations along 
the shock, and where the important 
dependent variable scalings are 

 (7) φ = ε ˜ φ , D =ε ˜ D = Dn / DCJ −1( ) , 
with the tilded variables being the scaled 
variables. See Figure 3 for the variable 
definitions. The basic form we derive for 
the propagation law is a strong function of  
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FIGURE 3. SCHEMA SHOWING 
REACTION ZONE FOR 2-STEP 
KINETICS MODEL. INTRINSIC 
COORDINATES AND VARIABLES 
ARE SHOWN. 
 
the form of the rate law, Ri . We next 
describe the propagation laws derived for 
two different rate law forms. 
 

 P nRate Law 
 For the pressure dependent rate 
law form 
(8) R1 = k P PCJ( )n 1− λ1 , 
where PCJ  is the Chapman-Jouguet 
pressure and k  is the rate constant, we 
have carried the derivation of the theory 
through two orders in the perturbation 
parameter, ε. This was previously 
reported in the 11th Detonation 
Symposium1. At O(ε) , the theory yields 
the classical Dn κ( )  front propagation law. 
At O(ε2) , the theory yields corrections 
involving transverse flow and acceleration 
terms. Combining the O(ε)  and O(ε2)  
terms and removing the ε scalings, yields 
the higher-order propagation law 

  

(9) κs + sin(φ)
r

= F(D) − A(D) DD
Dt

+ B(D)
∂2D
∂ξ 2 ,

 

where   F(D), A(D) and B(D)  are 
explicit functions derived in the theory. 

 To help with validation, we have 
performed high-resolution direct 
numerical simulations (DNS) of 
detonation in unconfined rate sticks and 
compared those results with theory for 
steady-state detonation. In the limit of 
steady detonation, we have 

 

(10) Dn = D0 cos(φ) ,

(11)
DD
Dt

= −DCJ
D0

DCJ

sin(φ)
 

 
  

 
 

2

κ s ,

(12)
∂ 2D
∂ξ 2 = −

D0

DCJ

sin(φ)
dκs

dξ
+ cos(φ)κs

2 
 
  

 
,

 

so that we can rewrite Eq. (9) as a first-
order ODE for κs . When combined with 
the equations defining the shock shape in 
terms of κs  and φ , we have a system of 
three first-order ODEs for the steady-state 
detonation front, as it is described by Eq. 
(9) 

 

(13) κ s
D0

DCJ

sin(φ) dκ s

dφ
= − D0

DCJ

cos(φ)κ s
2

− 1
B

κ s + sin(φ)
r

− F - D0

DCJ

sin(φ)
 
 
  

 
 

2

Aκs

 
 
 

 
 
 

,

(14) dr
dφ

= cos(φ)
κ s

,

(15)
dz
dφ

= −
sin(φ)

κs

,

where D0 is the phase speed of the 
detonation and r  and z  are radial and 
shock displacement coordinates, 
respectively. Note, that Eq. (13) would be 
singular at φ = 0 if the right hand side of 
Eq. (13) were nonzero at φ = 0. This 
singularity is removed by setting κs  such 
that the right hand side is zero at φ = 0, 
which corresponds to an eigenvalue 
condition, κsc ≡ κs (0), for this system of 
equations. Integrating this system of 
equations out to the prescribed edge 
boundary angle (corresponding to the inert 
confinement material selected) gives the 



shock locus shape and detonation velocity 
as a function of rate stick radius. 
 For the validation, we used the 
polytropic fluid, mock solid HE model 
that we reported on previously1. The 
parameters for the model are 
(16) ρ0 = 2gm /cc, γ = 3, DCJ = 8mm /µs,

n = 2, k = 1.2936µs−1,ηrz = 4mm ,
 

with a boundary angle, φe = 0.616, 
corresponding to zero confinement. 
Displayed in Figure 4 is a comparison of 
the theoretical results and those obtained 
with high-resolution DNS using a Ghost-
Fluid multi-material Euler solver7 in the 
Amrita8 DNS environment. The Amrita 
software provides us with patch based 
adaptive mesh refinement (AMR) and 
simulation scheduling (i.e., a utility for 
automating resolution and parameter 
studies). The dots with accompanying 
numbers indicate the DNS results and the 
number of mesh points in the stream-wise 
direction of the 1D, steady-state ZND 
reaction zone. Since the theoretical results 
were obtained with a perturbation theory 
referenced  to the Chapman-Jouguet state, 
the comparison is quite favorable 
considering the size of the detonation 
velocity deficits being considered. Also 
noteworthy is the substantial differences 
in computed wave speed with resolution,  

 
FIGURE 4. A COMPARISON OF THE 
DSD AND DNS DIAMETER EFFECT 
RESULTS FOR RATE PRESSURE 
EXPONENTS  N=0,1,2,3. 

 
FIGURE 5. Dn vs κ s  ALONG 
INDIVIDUAL SHOCKS AND FOR 
THE BASE DnK THEORY FOR THE 
REACTION RATE CASE OF N=2. 
 
even with 32 points in the ZND reaction 
zone. 
 As we have noted previously, the 
differences between the base Dn(κ)  
theory and higher-order theories is small 
when the admissible variation of the phase 
velocity for steady detonation is small. 
That this was the case for PBX 9502 is 
shown in Figure 1. The data for ANFO in 
Figure 2, shows that the Dn vs κs  along 
different radii shocks do not overlay and 
that the admissible phase velocities vary 
significantly with stick radius. The 
question then is: how is Dn vs κs  predicted 
to vary in the higher-order theory when 
large phase velocity differences are 
considered? Figure 5 shows the higher-
order theory bares some similarity to the 
shock curvature data observed for ANFO. 
Based on these similarities, in the section 
labeled CALIBRATION we will use Eq. 
(9) to develop a DSD calibration for 
ANFO. 
 
 2-Step Arrhenius Rate Law 
 Our previous work has shown that 
for chemical reaction rates that have either 
low or moderate state sensitivity, the 
leading order DSD theory is a Dn κ( )  
theory. Here we consider a chain-
branching reaction model having two 



components, where the first step is a 
thermally neutral induction step governed 
by a Arrhenius reaction with a large 
activation energy (the chain-branching 
step is called the IZ zone in Figure 3) 

(17) R1 = k1 exp −1
ε

 
 

 
 
exp 1

ε
1− Dn

DCJ

 
 
  

 
 

 

 
  

 
 ,

with
1
ε

=
Ea

DCJ

,
 

and the second step is a highly exothermic 
but state insensitive reaction (the chain-
recombination step is called the MRL 
zone in Figure 3) 
(18) R2 = k2 1− λ2 ,  
and where ε is the order parameter 
defined earlier for the weak curvature 
limit. That is, we consider a distinguished 
limit in which O(ε)  variations of the 
curvature can lead to O(1)  variations in 
the induction zone rate and consequently 
in the induction-zone length. Since the 
curvature effects act in the induction zone, 
we expect that some of the shock 
acceleration and transverse flow effects 
that enter the theory at O(ε2)  in the 
development in the previous sub-section, 
will be promoted to the O(ε)  theory. More 
details concerning this analysis can be 
found in Ref. 3. 
 With the same ansatz about the 
perturbation analysis that we made in the 
previous sub-section and that was used in 
Ref. 1, the N = O(1)  induction-zone 
length, is found to be 
  (19) N = −τ exp(−D) , 
where 0 ≤ τ ≤ 1 measures the induction-
zone length relative to the overall 
reaction-zone length for the 1D, steady-
state, ZND detonation. Since the IZ 
experiences O(1)  changes, this in turn 
leads to a large displacement of the MRL 
layer, and so has a large influence on 
where all the reaction energy is released. 
Proceeding with the O(ε)  MRL analysis, 
 

 
FIGURE 6. Dn vs κ s  ALONG 
INDIVIDUAL SHOCKS FOR THE 2-
STEP REACTION RATE MODEL. 
DIMENSIONLESS VARIABLES ARE 
PLOTTED. 
 
we find the leading-order DSD theory has 
become considerably richer 

 

(20) − α1D + α2Nκ s − α3κ s

+ α 4
DN
Dt

− α5
∂N
∂ξ

 
 
  

 

2

− α6
∂ 2N
∂ξ2 = 0 ,

 

where the αi
' s  are non-negative constants 

whose values are derived in the theory. 
Thus, high reaction state sensitivity has 
promoted acceleration and transverse flow 
effects into the leading-order theory. 
 As in the previous sub-section, we 
can use this propagation law to compute 
the rate stick problem. Shown in Figure 6 
are the results of such a calculation for the 
strong-shock limit of the model explosive 
(21) γ = 3, τ = 0.5, φe = 0.38 . 
The Dn vs κs  for this rate-law model is 
very different from the results shown in 
Figure 5. The curvature is nearly constant 
along some of the shocks while Dn  
undergoes considerable variation. Some of 
the ANFO data which has been reported 
on previously11, show some of these 
trends. These results come with one 
important caveat, preliminary indications 
are that Eq. (20) leads to unstable 
detonation propagation when time 
dependence is allowed. 



 In the next section, we describe the 
rate stick experiments that have been done 
to characterize ANFO. 
 
EXPERIMENTS 

 Our ANFO was composed of 
commercial (Titan Energy, Lot No. 
20FEB2001) explosive grade AN prills, 
with 6 wt.% diesel fuel. Separate bags 
were well blended prior to firing, to obtain 
consistent samples and to minimize batch-
to-batch variability. 

Twelve rate sticks were fired at 
ambient temperature in thin wall (6 mm) 
paper tubes. Seven diameters were tested 
between 77 and 205 mm inner diameter 
(ID). Three cases were successfully 
repeated to obtain duplicate front 
curvatures. The length-to-diameter (L/D) 
ratio was 10 in all cases. The charges were 
fired in a vertical position to 1) 
accommodate top loading, 2) record 
detonation front curvature at the bottom, 
and 3) obtain an axially symmetric density 
distribution to minimize wave tilt. A 
schematic diagram is shown in Figure 7. 
Each charge was loaded in ten separate 
liftsexcept for the 205 mm stick, which 
required twenty liftsto attain a uniform 
density throughout the charge. Individual 
lifts were weighed prior to pouring. 
During the pour of each lift, the outside of 
the tube was gently tapped. The top of 
each lift was lightly tamped with a flat-
bottomed plunger to provide a level prill 
distribution between lifts. The rise height 
of each lift was measured and the density 
per lift calculated. This procedure gave a 
bulk density of approximately 0.88 gm/cc. 
The shots were boosted using pressed 
PBX 9501 cylinders. These had the same 
ID as the tubes, and a L/D ratio of 1/2.  

The detonation velocity was 
measured using eleven self-shorting 
capped shock pins glued into holes drilled 
at equal intervals along the tube. The  
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FIGURE 7. SCHEMA OF ANFO  
RATE STICK EXPERIMENT. 
 
shorting pins were inserted flush with the 
ID of the tube starting four diameters from 
the top of the rate stick. The eleven 
shorting pins were connected to a Los 
Alamos DM-11 pin board and multiplexed 
to a single cable so that when the 
detonation wave shorts the pin, it fires an 
RC circuit in the pin board, producing a 
short voltage pulse. 

To measure detonation front 
curvature, the rate sticks were capped at 
the bottom with a PMMA window. A 
small strip of PETN paint was applied 
across the diameter of the inside window 
surface; this served as a flasher. It was 
applied in a thin layer and covered with 
copper tape to block reaction pre-light 
from the detonation front, which scatters 
20 to 30 mm ahead of the wave front.10 
The front curvature was recorded with a 
rotating mirror streak camera at a writing 
speed of 1 mm/µsec. Displayed in Figure 
8 is an example of a measured streak-
camera trace of the shock front shape. 

The film records were read on an 
optical comparator from edge to edge.  
 



FIGURE 8. STREAK-CAMERA 
TRACE OF AN ANFO SHOCK. 
 
The charge center was defined as the 
midpoint between the two edges. The 
magnification was inferred from the 
measured tube ID recorded in the pre-shot 
still. Shock traces were recorded for  205, 
153, 128, 115, 102 and 90 mm diameter 
charges. This data was reduced to give 
Dn vs κs  along each measured shock, in 
the manner described in Ref. 2. Those 
results are displayed in Fig. 2. The 
measured value of shock-edge angle was 
φe ≈ 29o . A linear least-squares fit was 
applied to the x − t pin data to obtain the 
phase velocity, D0, for each rate stick. 

Measurements were also made on 
a second ANFO lot (Titan Energy, Lot 
No. 30SE99C), with a density 0.90 gm/cc, 
that was nominally the same formulation 
as Lot No. 20FEB2001. Lot No. 30SE99C 
was stored in a magazine for over a year 
and experienced some separation of fuel 
oil from the AN prills, having 5 wt.% of 
diesel fuel when fired. The measured 
detonation velocities were similar for both 
lots. They are collected and displayed in 
Figure 9. The Dn vs κs  along the shocks 
for Lot No. 30SE99C were very different 
from the results presented in Figure 2 and 
are described in detail in Ref. 11. 

In the next section we describe 
how the data for ANFO lot-20FEB2001 
was calibrated to the propagation law  
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FIGURE 9. DETONATION PHASE 
VELOCITY DATA FOR 2 ANFO 
LOTS. 
 
form given by Eq. (9). 
 
CALIBRATION 
 In all DSD calibration work, the 
assumption is made that a single set of 
functions (  A(D), B(D) and F(D) ) and 
parameters ( DCJ and φe ) can be found 
that fit all of the available data for an 
explosive formulation. To maintain 
stability and regularity in the Eq. (9) 
modeling form, this fitting must be 
constrained such that   A(D) ≥ 0, 

 B(D) ≥ 0,  F(D) > 0, DCJ > 0 and φe > 0 . 
Otherwise, we have considerable 
flexibility in selecting the functions used. 
Some advantage is gained by selecting 
forms that have some basis in theory, 
since they bring with them the underlying 
structure in the problem. This is the 
approach we follow here in selecting the 
following forms for calibration 

 

(22) F(D) = −E1 ⋅ D ⋅ D +1− B1( )A1

⋅ exp −C1/(D + 1+ D1)( ) ,

(23) A(D) = E2 ⋅ 1− A2 ⋅ D + C2 ⋅ D 2

1− B2 ⋅ D + D2 ⋅ D 2

 
 
  

 
 ,

(23) B(D) = E 3 ⋅ 1− A3 ⋅ D + C3 ⋅ D 2

1− B3 ⋅ D + D3 ⋅ D 2

 
 
  

 
 ,

 



where the constants   A1 ≥ 0,L D3 ≥ 0 and 
where Eq. (22) supports the idea of a 
critical curvature, i.e.,   F  has a maximum 
in the range   0 < D < 1. 
 With these functions specified, 
Eqs. (13-15) can be integrated to get the 
diameter effect and shock shapes, once 
appropriate initial and boundary 
conditions are supplied. We integrate the 
equations from φ = 0, where we supply 
the initial data 

  

(24) κ s(0) = κsc + G ⋅ φ2 +L

(25) r(0) = 0 and z(0) = 0 ,
 

to φ = φe , where no condition need be 
applied. The constants κsc and G  are 
determined via a local analysis of Eqs. 
(13-15) carried out in the vicinity of 
φ = 0. The local solution, given by Eq. 
(24), is used for 0 ≤ φ ≤ δ  (with δ  small), 
after which the solution is carried out 
using a standard numerical ODE solver. 
 These numerically generated 
solutions are then systematically fit to the 
composite experimental data set, which 
consists of the phase velocities and the 
shock shapes (i.e., z vs r  for the shocks 
shown in Figure 2), using a Levenberg-
Marquardt, nonlinear least squares 
algorithm. To get a meaningful numerical 
Jacobian, a matrix which describes how 
the components of the computed solution 
vary with the changes in the parameters, 
the computed solution has to be highly 
accurate, with relative errors less than 
10−10. 
 Since the diameter effect and 
shock shape data sets contain very 
different numbers of data points, 
weighting functions need to be selected to 
determine the contributions each should 
make to the merit function,   M , that is to 
be minimized for the fit 

    
(26) M = E i

2

i
∑ , i = 1,L,m .  

Here m  is the number of independent data 
points and the  E i 's  for the diameter effect 
and shock shape data points are 
respectively 

 

(27) E i = WR ⋅
Ri(calc) − Ri(exp)[ ]

Ri(exp)
,

(28) E i = WS ⋅
Zij(calc) − Zij (exp)[ ]

R j(exp)
.
 

The constants WR  and WS  are the 
weighting factors for the diameter and 
shock data and Ri(exp) is the 
experimental charge radius, Ri(calc) is 
the calculated radius, Zij(exp)  is the shock 
displacement for the i − th  point on the 
j − th  charge and Zij(calc)  is the 
calculated displacement. 
 An examination of the right hand 
side of Eq. (13) reveals that to have the 
term containing  A be the same order as 
κs + sin(φ) /r( ) , then  A ≈ 10.  Given that 

the factor (D0 DCJ ) ⋅ sin(φ)( )2  keeps the 
 A term small over most of the charge 
radius, this term generally will not impact 
the calculation of the diameter effect by 
much. Although the  B  containing term 
has a more global reach, it must be of the 
order  B ≈ DCJ D0( )/κs ≈100  to play a 
significant role in the fits to the ANFO 
data. 
 In performing our parameter 
optimization, we have set A2 = 0 , B2 = 0, 
C2 = 0 , D2 = 0, A3 = 0 , B3 = 0, C3 = 0 , 
D3 = 0, WR = 50, WS =100, φe = 0.5  and 
DCJ = 5.2mm /µs , where the DCJ  value is 
suggested by the fit in Figure 9. With 
these choices, the optimization returns 
(29) E1= 0.04229mm−1, A1 = 0.0,

C1 = 0.06886, B1 = 0.5824, D1= 0.00012,
(30) E2 = 9.5231, E 3 = 28.4179mm .
Displayed in Figure 10 is a comparison of 
the shock shapes computed from the 
calibration and the shock shape data. The 
calibration is very good, as can be  



 
FIGURE 10. THE COMPUTED AND 
EXPERIMENTAL SHOCKS AND FIT 
RESIDUALS. 
 

 
FIGURE 11. Dn vs κ s  ALONG THE 
SHOCKS AND THE   κ = F(D )  
CURVE. 
 
seen by the residual level (the residuals 
are offset by –0.075 to facilitate plotting). 
A summary of the results from the model 
for Dn vs κs  along each individual shock 
and the for the underlying Dn(κ)  terms in 
the model, is shown in Figure 11. As 
should be clear, both the acceleration, 
  A(D) , and transverse,   B(D) , terms play 
significant roles in the DSD calibration 
for ANFO. 
 In the next section, we give an 
example of detonation front evolution 
using this ANFO calibration. Our new 3D 

front tracking code, based on level-set 
methods, is utilized for this purpose. 
 
3D LEVEL-SET CODE  
 Our group has used DSD front 
propagation codes, based on level-set 
methods, for some time.12 Recently, we 
have extended these methods to treat 
higher-order propagation models.  We 
have also developed new, robust 
numerical algorithms for applying DSD 
boundary conditions, which are suitable 
for handling complex, 3D HE geometries. 
Drawing on these developments, we have 
built a general purpose, 3D DSD front 
propagation code based on an extension of 
the level-set method. Two important new 
features included in this code are: 1) a 
method for establishing a priority order 
for setting the values of ghost nodes, that 
permits each ghost node to be set via an 
explicit evaluation (i.e., no iteration) and 
2) a modification of the level-set 
formulation that allows us to imbed Eq. 
(9) in a second level-set field. Ghost 
nodes (computational nodes immediately 
adjacent to the HE region) are used to set 
boundary conditions. 
 The extended level-set method 
solves the following two equations 

 

(31) ∂G
∂t

+ Dn (n ⋅ ∇(G))=

S(ψ )
ε2

⋅ σ2 − n ⋅ ∇(G)( )

− DCJ

A(G)
⋅ κ − F − B(G) ⋅

∂2G
∂ξ 2

 

 
  

 
 

 

and 

(32)
∂ψ
∂t

+ Dn ∇(ψ) =
S(ψ)

ε1

⋅ (σ1 − ∇(ψ)) ,  

where S(ψ) is a Heaviside function 

(33) S(ψ) =
ψ

ε3 +ψ 2
,  

and where ψ  is the level-set function that 
imbeds the detonation front location (with 



the level ψ = 0 representing the 
detonation front location),   G is the level-
set function that imbeds the detonation 
front speed (  G(ψ = 0) = 0 gives the speed 
at the front location) and   ε1,L,ε3  are small 
parameters.  The first terms on the right 
hand side of Eqs (31-32) act to maintain 
the gradient of the level-set functions at 
specified constants; at σ1 for Eq. (32) and 
at σ2  for Eq. (31). The advantages of 
using a level-set formulation are discussed 
in Ref. 12. 

 
 
FIGURE 12. 3D DSD CALCULATION 
OF ANFO RATE STICK USING EQ. 
(9). 
 

Using this extended, 3D level-set 
code, we show that Eq. (9) and the Eqs. 
(29-30) ANFO calibration produces a 
stable propagating detonation. We 
consider the problem of detonation in a 
200 mm diameter rate stick and subject to 
an edge angle of φe = 0.5 . The detonation 
front, captured at a number of different 
times as the detonation proceeds up the 
stick, is displayed in Figure 12. 
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