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Atomistic simulations were used to calculate isothermal 
elastic properties for β-, α-, and δ-octahydro-1,3,5,7-
tetranitro-1,3,5,7-tetrazocine (HMX).  The room-temperature 
isotherm for each polymorph was computed in the pressure 
interval 0 ≤ p ≤ 10.6 GPa.  These were used to extract the 
isothermal bulk modulus KT and its pressure derivative 
KT′=dKT/dp using two fitting forms employed previously in 
experimental studies of the β-HMX equation of state.  Issues 
pertaining to sensitivity of the fitted parameters to details of 
the fitting form chosen and the weighting scheme used in the 
fits are discussed.  The complete elastic tensor for each 
polymorph was calculated at room temperature and 
atmospheric pressure using the strain-strain fluctuation 
formula of Rahman and Parrinello, from which bulk and 
shear moduli were extracted.  We report a preliminary 
prediction of a phase transition from α-HMX to a new 
polymorph, α’-HMX, for pressures between 0.2 and 0.5 GPa. 

 
 
INTRODUCTION 
 
   Mesomechanics simulations, in which 
microstructure in a heterogeneous 
material is spatially resolved within a 

continuum hydrodynamic computational 
framework, are increasingly used to 
understand the physical response, e.g., 
thermal localization (hot spots) of plastic-
bonded high explosives (PBXs) under 



  

various loading scenarios.1,2 The goal of 
such studies is to identify and 
characterize the essential dissipative 
processes that must be captured in order 
to provide reliable, physically-based 
subgrid physics models for use in 
predictive, macroscale engineering 
codes3.  The development and 
parameterization of mesomechanical 
models presents a significant challenge, 
given the expense and practical 
difficulties associated with measurements 
of explosive properties for the 
thermodynamic conditions of interest.  
For example, measurement of melt 
properties for many high explosives 
(HEs) is extremely difficult, if not 
impossible, due to the rapidity and 
violence of their chemical reactions 
above the melting transition.  We argue, 
however, that judicious application of 
molecular simulation tools for the 
calculation of appropriate properties is a 
viable strategy for obtaining information 
required as input to mesoscale equations 
of state. 
   The high explosive octahydro-1,3,5,7-
tetranitro-1,3,5,7-tetrazocine is the 
energetic material in a number of high 
performance explosive formulations.4  
HMX exhibits three pure crystal 
polymorphs at ambient pressure.  These 
are denoted β-,5,6 α-,7 and δ-HMX,8 
where they are listed in terms of stability 
with increasing temperature. The elastic 
mechanical response of HMX is a key 
ingredient in the formulation of a 
complete HMX equation of state.  Two 
general experimental approaches have 
been applied to obtain the elastic 
properties of HMX: measurements of the 
isotherm, V=V(p),9,10, and determinations 
of isentropic sound speeds from 
impulsive stimulated light scattering 

methods (ISLS).11  The isotherm can be 
used to obtain the isothermal bulk 
modulus KT and its pressure derivative 
KT’=dKT/dp via an assumed equation of 
state fitting form.  ISLS sound speed 
measurements provide direct information 
about the isentropic elastic tensor, from 
which the bulk and shear moduli, as well 
as other engineering parameters can be 
extracted.   
   There are two published measurements 
of the room temperature isotherm for β-
HMX.  Olinger, Roof, and Cady reported 
an x-ray determination of the room 
temperature lattice parameters of β-HMX 
in the pressure interval 0 < p < 7.47 GPa.9  
They fit the isotherm to an equation of 
state 

( )
( )[ ]

2
2

00

0
T

T

c
VVsV

VV
Vp

−−

−
=   (1) 

based on the hugoniot jump conditions, 12 

s

p

U

U

V

V
−=1

0

,       (2) 

spUUpp 00 ρ+= ,    

where V is specific volume; Us and Up are 
the pseudo shock velocity and pseudo 
particle velocities, respectively;  ρ is 
density; and “0” denotes the reference 
state (atmospheric pressure in the present 
case).  The fitting parameters cT and sT 
are related to the bulk modulus KT and its 
pressure derivative KT’ as KT=ρ0cT

2 and 
KT’=4sT-1, respectively.  In their analysis, 
Olinger et al. observed a linear relation 
between Us and Up, Us=cT+sTUp, and 
obtained KT=13.5 GPa and KT’=9.3.   
   More recently, Yoo and Cynn revisited 
the β-HMX isotherm.10  Their synchotron 
x-ray determination of the pressure 
dependent lattice parameters extended the 
isotherm to 43 GPa (discovering two 
previously unreported phase transitions; 
including an apparent martensitic 



  

transition at ~12 GPa, identified based on 
abrupt changes in the Raman spectrum; 
and second one with a 4% volume change 
at ~27 GPa.).  They analyzed their data 
using the third-order Birch-Murnaghan 
equation of state13 
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where η=V/V0 is the compression ratio at 
pressure p.  Yoo and Cynn reported 
KT=12.4 GPa and KT’=10.4, for pressures 
below 27 GPa.   
   Menikoff and Sewell14 recently 
reported a re-analysis of the experiments, 
applying both fitting forms to both data 
sets, in an attempt to reconcile the 
discrepancy between them and to 
determine which data set and fitting form 
combination is most consistent with the 
preponderance of other data for HMX 
and HMX-based PBXs.  In the case of the 
Yoo-Cynn data, they also considered the 
sensitivity in the predicted values of KT 
and KT’ to the interval of the data used, 
due to the presence of phase transitions.  
Although Menikoff and Sewell obtained 
values of KT and KT’ that disagreed 
significantly with those reported by Yoo 
and Cynn, they found that their data, fit 
using the third-order Birch-Murnaghan 
equation of state, leads to better overall 
agreement with the other HMX data than 
does the Olinger-Roof-Cady set.  On the 
basis of this study, Menikoff and Sewell 
concluded that the best one can say about 
KT and KT’ at the time of their report is 
that KT=14.3± 3.5 GPa and KT’=7.5± 1.9.  
This is a large uncertainty in a parameter 
that figures prominently in the Mie-
Gruneisen equation of state commonly 
used in mesoscale and engineering 
models of HMX. 
   Published information about the elastic 
tensor for β-HMX is limited to a partial 

determination, due to Zaug, at two 
temperatures.11 By fitting to sound speeds 
determined from ISLS measurements, 
Zaug was able to obtain a set of elastic 
coefficients. With only two experimental 
samples of similar orientations available, 
however, the number of elastic 
coefficients projecting strongly onto the 
observed sound speeds was limited; 
indeed, only five of the thirteen non-zero 
elastic constants could be accurately 
determined (C11, C15, C33, C35 and C55). 
To determine a complete set of elastic 
coefficients corresponding to a globally 
optimized fit would require additional 
measurements for different crystal 
orientations.   
   The thermophysical and mechanical 
properties of HMX have been the subject 
of a number of atomistic simulation 
studies.15-24 Sewell16 used a rigid 
molecule force field, in conjunction with 
isothermal-isobaric Monte Carlo 
methods, to compute equilibrium 
structural parameters and the room 
temperature isotherm of β-HMX and 
RDX.  He obtained good agreement with 
the data of Olinger et al.9 for both 
materials.  Thompson and co-workers 
have developed a “transferable” 
intermolecular force field,25 and applied it 
to a number of high explosives.  They 
calculated the isotherm for β-HMX,18 and 
used the Murnaghan equation,  
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to obtain a values (KT=14.53 GPa, 
KT

’=9.57) or (KT=16.86 GPa, KT
’=9.50) 

for the bulk modulus and pressure 
derivative, using P21/c and P21/n space 
group settings, respectively.  (This 
discrepancy is a point of some confusion, 
since the two space groups are 



  

equivalent; one possible explanation is 
differences in molecular geometry 
associated with the two experimental 
structure determinations.)   
   Lewis and co-workers19 reported 
quantum chemistry-based predictions of 
crystal structures for all three HMX 
polymorphs.  They obtained a value of 
12.5 GPa for the bulk modulus of β-
HMX, based on a full optimization of the 
primary simulation cell contents and the 
three lattice lengths.  (The lattice angles 
were constrained to experimental values.)  
Estimates for the bulk modulus of α- and 
δ-HMX were significantly larger, 38.6 
and 48.0 GPa, respectively, but are highly 
suspect due to geometric constraints 
imposed during the optimizations, which 
almost certainly led to large non-
hydrostatic elements in the stress tensor.  
(This fact was recognized and pointed out 
by the authors of that study.) 
   Bedrov et al. have reported previously 
calculations of the structural and elastic 
properties of the three pure crystal 
polymorphs,22,23,24 and the temperature 
dependent shear viscosity20 and thermal 
conductivity21 of the liquid phase.  The 
calculations were performed using 
atomistic molecular dynamics methods 
with a fully flexible, quantum chemistry-
based force field.26  Good agreement with 
experiment was obtained for equilibrium 
lattice parameters, linear and volumetric 
coefficients of thermal expansion, and 
heats of sublimation, ∆Hs, for each 
polymorph.22,23 The predicted melt 
thermal conductivity is consistent with 
data for the solid state at elevated 
temperatures.21   
   The focus of the present work is the 
elastic mechanical properties of HMX 
polymorphs at room temperature and 
pressure.  In particular, we calculate the 

room-temperature isotherm for each 
polymorph and extract the bulk modulus 
KT=-Vdp/dT and its pressure derivative 
KT’=dK/dp using the two fitting forms 
identified above.  In the case of β-HMX, 
we compare our results to experiment. 
We apply formalism due to Rahman and 
Parrinello27 to compute directly the 
second-order elastic tensor at room 
temperature and pressure.  Beyond the 
fact that these properties are key elements 
in the description of the elastic 
mechanical response of HMX, additional 
points of interest are: (1) the level of 
internal consistency between values of 
the bulk modulus calculated directly from 
the elastic tensor to values obtained from 
the equation of state fitting forms, (2) the 
sensitivity of the latter to the form chosen 
and the details of how the fit is 
performed, and (3) the agreement 
between predicted results and the 
available experimental data.  This article 
supercedes an initial report in an earlier 
conference proceeding.24 

 

COMPUTATIONAL DETAILS    
 
   Calculations were performed in the 
isothermal-isobaric (NpT) statistical 
ensemble.28  Periodic boundary 
conditions corresponding to a general, 
triclinic primary cell were used.  The 
simulations were performed using the 
same force field as in our previous studies 
of HMX.20-24 The development26 and 
implementation20,22 of the force field are 
described elsewhere.  We note that our 
simulations include all degrees of 
freedom other than covalent bond 
stretching motions, which were 
constrained to equilibrium values using 
the SHAKE28 algorithm.  The effects of 
this constraint are expected to be small. 



  

   The β-, α-, and δ- phases of HMX are 
monoclinic5,6 (P21/c or, equivalently, P21/n 

space group, Z=2 molecules per unit cell, 
symmetry axis = b; 13 independent 
elastic coefficients29), orthorhombic7 
(Fdd2, Z=8; 9 independent elastic 
coefficients), and hexagonal8 (P61, Z = 6, 
symmetry axis = c; 5 independent elastic 
coefficients), respectively.   Primary 
simulation cells containing 96 molecules 
were used for β-HMX and δ-HMX, 
corresponding to 48 (4x3x4) and 16 
(4x4x1) unit cells, respectively.  Primary 
cells containing 64 molecules were used 
for α-HMX, corresponding to 8 (2x1x4) 
unit cells. Electrostatic interactions were 
treated using the standard Ewald 
summation.28 Non-bonded interactions 
were truncated at 9 Å, 10 Å, and 10 Å for 
β-, α-, and δ-HMX, respectively. A fixed 
time step size of one fs was used in all 
cases.   Equilibration runs of one ns 
duration were performed, followed by 
production runs of ten ns and two ns for 
p=1 atm and p > 1 atm, respectively, 
during which data were collected for 
subsequent analysis.  All of the 
calculations were performed at 295 K. 
   We used NVT-MD to sample the 
contents of the simulation cell, and an 
NpT-MC Monte Carlo algorithm to vary 
its shape and volume.  The latter moves 
were carried out as described 
previously,16 within a rigid-molecule 
framework using the atomic positions at 
the end of the preceding NVT-MD 
sequence.  In practice, 1000 fs of NVT-
MD was followed by a sequence of 100 
NpT-MC states.  Thus, over the course of 
one ns accumulated NVT simulation time, 
100,000 Monte Carlo states were 
sampled.  The Monte Carlo step size for a 
given thermodynamic state was adjusted 

to yield an acceptance probability of 40-
50%.   
 
DATA ANALYSIS 
 
   We observed clear deviations from 
linearity at low pressures in our isotherms 
in the Us-Up plane, with increased 
compressibility of the crystal at pressures 
below one GPa.  While such behavior 
would be anomalous for metals, it is 
actually expected in the case of 
polyatomic molecular crystals, due to 
complicated molecular packings and 
intramolecular flexibility, and has in fact 
been reported for the high explosive 
pentaerythritol tetranitrate (PETN).30  We 
accommodated this nonlinearity in the 
Us-Up plane by fitting our results to 
quadratic form, 

2
ppTTs qUUscU ++= .   (5) 

   We note that the third-order Birch-
Murnaghan equation of state can be 
written as a linear function in KT and 
KTKT’ via the transformation 

x=[η-2/3-1]-1-3      (6) 
y=2p(V){3[η-7/3-η-5/3][η-2/3-1]}-1,  

for which the slope and intercept are KT 
and 3KTKT'/4, respectively.  In this plane, 
low-pressure data points are more heavily 
weighted than high pressure ones.  We 
argue that fits to obtain the initial bulk 
modulus and pressure derivative using the 
third-order Birch-Murnaghan equation of 
state should employ Eq. 6 rather than a 
direct fit of Eq. 3 in the p-V plane, for 
which all data points are weighted 
equally, regardless of pressure. 
   We have applied both the quadratic Us-
Up and the two third-order Birch-
Murnaghan fitting forms to the calculated 
isotherms.  The results are compared to 
the experimental data, where available, 



  

and to bulk modulus values obtained 
directly from the elastic tensor.   
   Rahman and Parrinello27 showed that 
the fourth-rank elastic tensor for an 
anisotropic crystalline solid can be 
calculated using fluctuations of the 
microscopic strain tensor: 

1−
= klijijkl

V

T
C εεκ ,     (7) 

where V  is the average volume at a 

given temperature T (and, implicitly, 
pressure p).  The instantaneous strain 
tensor is given by 
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where h is the matrix that transforms 
between cartesian and scaled coordinates, 
superscript “T” denotes matrix transpose, 
and h0 is the reference state of the system 
at a given p-T state, corresponding to the 
average volume and shape.  Equations 7 
and 8 are readily constructed from a 
suitably large set of observations from an 
isothermal-isobaric simulation.  The 
fourth-rank elastic tensor C can be 
expressed as a 6x6 matrix using Voigt 
notation; details can be found 
elsewhere.31 The particular form expected 
for C is determined by the symmetry 
class for a given crystal (e.g., monoclinic, 
orthorhombic, and hexagonal for β-, α- 
and δ-HMX, respectively), and can be 
used as a partial check for convergence of 
the simulation results.   
 
RESULTS AND DISCUSSION 
 
   Calculated and measured lattice 
parameters and unit cell volumes at 295 
K and one atmosphere were compared for 
each HMX polymorph.  We note that 
experimental determinations for all three 
cases were made under these conditions. 

The results are in good agreement with 
experiment.  The average magnitude 
percent error in molecular volumes is 
0.8%, with a maximum of 1.8% occurring 
for α-HMX.  The average magnitude 
percent error in lattice lengths is 2.8%, 
1.2%, and 1.8% for β-, α-, and δ-HMX, 
respectively; the maximum among all 
lattice lengths is 4.6%, for lattice length b 
in β-HMX. 
   Simulated and measured compression 
curves for β-HMX are shown in Fig. 2.  
The agreement between experiment and 
simulation is reasonably good: at the 
highest pressure considered here, 10.6 
GPa, the percent difference between our 
compression ratio V/V0 and that of Yoo 
and Cynn is 4.6%. The solid line passing 
through the simulation results is a fit of 
the third-order Birch-Murnaghan 
equation of state to the data using Eq. 6.  
Application of Eq. 5 to the β-HMX 
isotherm leads to the Us-Up curve shown  
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FIGURE. 1: ISOTHERMS FOR β-
HMX AT 295 K.  SIMULATION: 
THIS WORK; ORC: REF. 9; YC: 
REF. 10.  
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FIGURE 2. CALCULATED β-HMX 
ISOTHERM IN Us-Up PLANE.  
SOLID CURVE IS QUADRATIC FIT 
TO RESULTS. 
 
in Fig. 2.  Curvature of the results in this 
plane is clearly evident.  Experimental 
studies of the isotherm typically provide 
little if any information for pressures 
below about one GPa, and thus estimates 
of sound speeds based on extrapolation of 
such data are likely to yield overestimates 
to true values. 
   The calculated elastic tensor for β-
HMX is provided in Table 1, where 
values reported by Zaug11 are also 
included.  As mentioned above, Zaug’s 
experiments sufficed to determine 
uniquely five of the thirteen elastic 
constants (modulo the need to specify a 
target value for the bulk modulus). These 
coefficients -- C11, C33, C55, C15, and C35 -
- are shown in boldface in Table 1.  The 
comparison between the two sets is most 
meaningful for those particular Cij.   
 In Fig. 3 we summarize all of the data 
for the room temperature bulk modulus of 
β-HMX.   Individual values of the bulk 
modulus in Fig. 3 are plotted along the 
ordinate, while the abscissa corresponds 
to source of information: the present 
simulation (simul), the data of Olinger,  

TABLE 1.  ELASTIC TENSOR FOR 
β-HMX AT 1 atm AND 295K.a 

 
 

 
β-HMX  
(expt)b 

 
β-HMX 
(calc) 

 
C11 

 
20.8 

 
22.2±0.3 

C22 26.9 23.9±0.5 
C33 18.5 23.4±0.5 
C44 4.2 9.2±0.2 
C55 6.1 11.1±0.1 
C66 2.5 10.1±0.1 
C12 4.8 9.6±0.7 
C13 12.5 13.2±0.3 
C23 5.8 13.0±0.2 
C15 -0.5 -0.1±0.3 
C25 -1.9 4.7±0.2 
C35 1.9 1.6±0.2 
C46 2.9 2.5±0.3 
aFor β-HMX, a is directed along x̂ , b is 
along ŷ , and c is in the zxˆˆ plane, in a 
right-handed cartesian frame.  Error bars 
reflect elastic coefficients computed from 
five sub-averages from the overall set of 
configurations.  bZaug11 chose a different 
orientation in his experiments on β-
HMX; we have transformed the elastic 
tensor presented in Ref. 11 to coincide 
with the choice made in the present work. 
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FIGURE 3:  SUMMARY OF BULK 
MODULUS DATA FOR β-HMX.   



  

Roof, and Cady (ORC), and Yoo & Cynn 
for limiting pressures of 12 GPa (YC<12) 
and 27 GPa (YC<27).  Several points are 
to be noted.  First, the bulk modulus 
derived from the calculated elastic tensor 
is equal within error bars to that obtained 
from an analysis of volume fluctuations, 
and are close to values obtained from 
EOS fits to the isotherm.  The simulation 
predictions are in good agreement with 
results based on the Yoo and Cynn 
isotherm; the isotherm of Olinger et al. 
leads to a somewhat lower range of 
values.  Menikoff and Sewell concluded 
that, between the two experimental 
isotherms, Yoo and Cynn’s data are more 
consistent overall with other data for 
HMX and HMX-based explosives.  
However, values for K from their data 
and from the present simulations are 
larger by 2-3 GPa than is typically used 
in the Mie-Gruneisen equation of state 
commonly used for HMX.    
 Calculated isotherms for α- and δ-
HMX are presented in Fig. 4.  There are 
no experimental data available for 
comparison. The results for δ-HMX 
indicate a higher compressibility relative 
to β-HMX.  For the case of α-HMX, the  
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FIGURE 4.  ISOTHERMS FOR HMX 
POLYMORPHS. 

initial slope is comparable, but a clear 
break in the compression curve is 
observed between 2 and 5 kbar.  This is 
discussed further below.    
   There are no previous reports 
concerning the elastic coefficients for α− 
and δ-HMX.  The present results indicate 
considerable anisotropy in the principal 
elements of the tensor for α-HMX.   
 
TABLE 2. ELASTIC TENSORS FOR 
α- AND δ-HMX AT 1 atm AND 295 
K.a 

  
α-HMX 

 
δ-HMXb 

 
C11 

 
30.6±0.5 

 
14.5±0.7 
C11=C22 

C22 23.3±0.8 14.0±0.8 
C22=C11 

C33 31.4±0.2 18.0±0.9 
C44 0.80±0.04 4.4±0.2 

C44=C55 
C55 3.3±0.1 4.4±0.2 

C55=C44 
C66 3.3±0.2 2.3±0.4 

C11-C12 
C12 5.7±0.7 10.3±0.5 
C13 13.8±0.7 10.6±0.7 

C13=C23 
C23 6.0±0.3 10.3±0.4 

C23=C13 
aFor α-HMX, a, b, and c are directed 
along the ,ˆ,ˆ yx and ẑ  axes, respectively, in 
a right-handed cartesian frame.  For δ-
HMX, a is directed along x̂ , b is in the 

yxˆˆ  plane, and c is along the ẑ  axis  
bActual calculated values.  Where shown, 
relations among the elastic constants 
reflect formal expectations based on 
crystal symmetry. 

 



  

Formal, symmetry-based expectations for 
δ-HMX are satisfied to within estimated 
error, with the exception of C66, for which 
the predicted value C66 = 2.3 GPa differs 
from the expected value C66=C11-C13=3.9 
GPa.    
   Bulk and shear moduli for all three 
HMX polymorphs are summarized in 
Table 3.  Relative to β-HMX, the 
predicted bulk moduli of α- and δ-HMX 
differ by roughly 7% and 22%, 
respectively, and correlate reasonably 
well with crystal density.  We note that 
the shear moduli of α- and δ-HMX are 
predicted to be, at most, half the value for 
β-HMX.  
 
TABLE 3.  BULK AND SHEAR 
MODULI FOR HMX AT 1 atm AND 
295 K. 

 
 

β-HMX  
(expt) 

β-HMX 
(calc) 

 
K (GPa) 

14.0±3.5a 15.1b 
15.1, 15.7c 
15.5d 

G (GPa)  7.0, 8.3c 
 

 
α-HMX 
(calc) 

δ-HMX 
(calc) 

 
K (GPa) 

 
14.1b 

14.3, 15.1c 
14.0d 

 
11.8 b 

11.9, 12.1 c 
12.0 d 

G (GPa) 2.4, 5.5c 2.9, 3.2 c 
 
aRef 14. bFrom volume fluctuations, 
using 2/ VVTK σκ= , where 2

Vσ  is the 

Gaussian variance of the volume 
distribution from the simulation.  cFrom 
the elastic tensor (Reuss average, Voigt 
average).  dThird-order Birch-Murnaghan 
equation of state, fit using Eq. 6. 
 

   In light of the apparent break in the 
compression curve for α-HMX, we 
examined more closely the structures for 
simulations at two and five kbar.  
Snapshots for those two cases are shown 
in Fig. 5.  A clear phase transition, 
involving both the molecular orientation 
and crystal symmetry class, but not the 
molecular point group, is observed.  We 
emphasize that this is a preliminary 
result.  
 

FIGURE 5.  PRESSURE INDUCED 
PHASE TRANSITION IN α-HMX.  
VIEWS SHOW PROJECTION OF 
SIMULATION CELL BELOW 
(LEFT) AND ABOVE RIGHT) 
TRANSITION. 
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